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Abstract—The method proposed in this article allows to
construct error-masking fail-operational systems by combining
time and area redundancy. In such a system, error detection is
performed online, while error masking is achieved by a short-
duration offline test. The time penalty caused by the offline test
applies only when an error is detected. The error-masking ability
in such a system is very close to TMR, the area overhead is
smaller for a well defined class of circuits, and the delay penalty
caused by the offline test remains reasonably small. The short-
duration offline test is possible only when extensive design-for-test
practices are used. Therefore, a novel gate structure is presented,
which allows to construct combinational circuits testable by a
short-duration offline test. The proposed test offers complete
fault coverage with respect to the stuck-on and stuck-open fault
model. The proposed solutions are combined and a comprehensive
description of the overall error-masking architecture is provided.

I. INTRODUCTION

In applications, where dependability is required, some
kind of redundancy has to be involved. In most cases, the
time (temporal) or area (spatial) redundancy is considered.
The redundancy offers an information which enables to
identify and/or repair an erroneous output of the system. To
obtain this kind of information, it is possible to perform
parallel computations by using independent computational
units, perform recomputation using the same unit, or use offline
testing [1].

The erroneous system output is caused by a fault
at the physical level. From the physical faults point of
view, area redundancy-based methods are well suitable for
mitigation of errors caused by both transient and permanent
faults. Computation repetition (i.e., time redundancy) can be
efficiently used for mitigating errors caused by transient faults.

Offline testing can be used to identify long-duration
transient or permanent fault presence in the system under
test [1]. Additionally, offline testing can be efficiently used to
correct errors only if the test has significant and realistic fault
coverage. If the offline test passes, the output of the system
may be correct or not, depending on the test coverage. On the
other side, if the test does not pass, it is clear, that for the
set of input vectors, the system produces an erroneous output
(but it can still produce correct outputs for another set of input
vectors).

We can divide the error correcting and detecting methods
by the impact to the system performance to online and offline

methods. Online methods do not affect the system latency
significantly, while offline methods suspend the system.

The online error correction can be achieved by triplicating
the original module. This is, for example, a Triple modular
redundancy (TMR) system – see Figure 1a. TMR is able to
produce correct output, if at least two out of three identical
modules are fault-free.
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Fig. 1. Conceptual schemes of an error-correcting (a) TMR and (b) duplex
system with a self-checking module M*

Online error correction functionality can also be obtained
by using self-checking modules [2], [3] in a duplex system.
A duplex system contains two modules providing the same
function. At least one of the two modules must be self-
checking (M*) to provide online error-detection ability. The
self-checking module is used for error localization, and
consequently for error correction. This approach is presented
in Figure 1b.

Providing online error-detection typically means
introducing some area overhead [3]. A simple example
of a self-checking module is a duplex system itself [1]. This
is why the area of a duplex system with one self-checking
module (a duplex too) is close to the area of TMR.

From a conceptual point of view, an offline test can be used
to provide the same information as the self-checking module –
see Figure 2. The main functional difference is that the decision
may be delayed. Additionally, TMR detects errors, while tests
detect faults. Hence, the fault model used must be realistic and
the test fault coverage must be complete. Unfortunately, such
a test has typically number of disadvantages: the test must be
generated by an ATPG (Automatic Test Pattern Generator), it
must be stored in an on-chip memory, and the testing itself is
time-consuming [1].



To circumvent the problem of expensive test vectors
generation and storing in memory, we propose a method, where
the test vectors and the test responses are easy to produce and
check in hardware, while the test length is in orders of tens
computational (clock) cycles only. We call such a test a short-
duration test. If the fault coverage is 100% with respect to
given fault model, we call the test a complete short-duration
test.

This article presents a novel method combining offline
testing with functional module duplication. Computation is
performed in parallel by two independent modules and their
outputs are concurrently compared. If the outputs differ, the
short-duration offline test is executed for one module. The test
confirms or disproves the fault presence in the module under
test. From this information, the potentially faulty module can
be identified. This module may produce erroneous output, so
it is marked as faulty and the other module as the correct one.
The offline testable module is denoted as M** – see Figure 2.
We call the system, where one M and one M** module is used,
as a Time-Extended Duplex (TED).
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Fig. 2. Conceptual scheme of an error-correcting duplex with module M**

(offline testable) – the Time-Extended Duplex

The rest of the article is structured as follows: the state-of-
the-art is described in Section II, then the basic principles of
the Time-Extended Duplex structure are explained in Section
III. The approaches allowing to construct a short-duration
offline testable combinational logic are presented in Sections
IV and V. The detailed description of the TED architecture
is provided in Section VI. The complete short-duration test
is described in Section VII. The experimental evaluation is
presented in Section VIII and the article is concluded by
Discussion and Conclusions (Sections IX and X).

II. STATE-OF-THE-ART

Other works combining time and area redundancy often
deal only with transient or soft faults like single-event upsets
(SEU), e.g., [4]. Some methods presented in the past rely
on parts, which are not backed up and are considered to be
reliable enough, while the unreliable part of the system is
reconfigurable and thus allows the fault-recovery, e.g., [5].

In FPGAs, a kind of duplex system can be used to detect
errors caused by bit-flips. Reconfiguration is then employed to
repair the faulty parts [6], [7].

Approaches employing functionally equivalent units and
backup units were also presented [8], [9]. Here, the error
detection is significantly delayed [9] and the unit output is not
checked in every cycle, thus the fault needs not to be identified,
and an incorrect output is produced.

To introduce some level of reliability into high-
performance chips, the problem with additional delay caused
by checkers was studied years ago [10]. Although fast checkers
are used, some delay is still introduced and additionally the
area overhead caused by high-performance checkers is large.
To allow to use lower performance checkers and mask the
introduced delay, pipeline micro rollback was introduced in
[10]. Similar approaches were presented later, e.g., [11], [12]
or [13]. The presented pipeline rollback-based approaches are
suitable for handling soft-errors only.

The approach called dynamic implementation verification
architecture (DIVA) presented in [12] is similar to the pipeline
rollback. It is based on concatenation of two pipelines. The
first pipeline is more complicated and performs a speculative
computation. It is implemented to be as fast as possible, and
thus it is less reliable. The second pipeline checks the results of
the first pipeline. Because in the second pipeline there are no
slow inter-instruction dependencies, it is fast enough, although
it is implemented in a robust technology.

A. Previous Work

This paper extends our previous work, while its main
principle is preserved. The key part of our method is the use of
the complete short-duration test of the combinational module
M**. In [14] we propose C-element-based gates allowing a test
with a complete stuck-at-fault coverage at the gate level. This
is achieved by circuit monotonicity, symmetry, and increased
controllability of the proposed gates, and also because the C-
element is state-holding [15].

These properties allow applying very simple test vectors at
the circuit inputs – these are just all-zero and all-one vectors.
The circuit is level-by-level flooded by a single value (one
or zero). These values are propagated to the circuit primary
outputs by using additional control signals.

In a fault-free circuit, an all-zero output is the response
to the all-zero input and an all-one output is the response
for the all-one input. If there is a fault in the circuit, the
opposite logic value is propagated from the fault location up
to the circuit outputs. In other words: the circuit is flooded
by zeroes and subsequently by ones and any fault blocks the
value propagation from the circuit inputs to the outputs. Such
test vectors and test responses are easy to produce and check
in hardware and the test controller is a simple state machine.

B. Fault Model

The ability of error correction in TED is determined by the
fault coverage and the accuracy of the selected fault model.
In industry and also in academia, the gate-level stuck-at-fault
model is widely used because of its simplicity. We moved
to a more accurate transistor-level stuck-open/stuck-on fault
model [16]. The faults correspond to permanently closed or
open transistors.

The stuck-open/stuck-on fault model includes all gate-
level stuck-at-faults and extends the stuck-at-fault model by
assuming faults at every wire branch – this corresponds to
the permanently open/closed transistor [17]. This model covers
more physical defects [17], while remaining reasonably simple
to evaluate.



Note, that the bridging faults are not fully covered in both
stuck-at and stuck-open/stuck-on fault models, even though
the high stuck-at or stuck-open/stuck-on fault coverage implies
high bridging fault coverage [18].

The test presented in this article has 100% fault coverage
with respect to the stuck-open/stuck-on fault model.

C. Contribution of the Paper

This article presents a design for test (DFT) method
allowing to construct fast offline-testable combinational logic
modules (M**) and provides a detailed description and
evaluation of all prerequisites, such as monotonic circuit
construction and simple but accurate gate model. By using
the M** blocks, the time-extended duplex system can be
constructed. The proposed time-extended duplex has its error-
correcting ability very close to TMR and can be smaller at
the same time. Even though the time-extended duplex reduces
the total size of combinational logic, an additional logic for
test is required. Experimental data on the total overhead and
comparison with TMR are also provided.

Naturally, as the time-extended duplex employs time
redundancy only when a fault is detected, some kind of
handshaking is required. The system containing the time-
extended duplex is globally asynchronous.

Our approach is more general than the works presented
in the past – erroneous output is detected immediately,
it is possible to secure any combinational circuit with no
limitations, and it is possible to detect both transient and
permanent faults.

III. HIGH-LEVEL DESCRIPTION OF THE TIME-EXTENDED
DUPLEX
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Fig. 3. A high-level scheme of the Time-Extended Duplex

Similarly to the TMR system (Figure 5), the TED structure
shown in Figure 3 processes three equivalent inputs (I, J and
K) and offers three equivalent outputs (OUTPUT SELECTs
produce R, S and T). However, it is composed of only two
functionally equivalent combinational logic blocks ( M and
M**). This arrangement ensures: 1) that TED tolerates the
errors in the predecessing logic by comparing three equivalent
inputs; and 2) that the following logic is able to select correct
TED output in case of an error in the (triplicated) output logic.

The internal duplex arrangement allows error detection,
not error masking. The error masking ability is allowed by

the short-duration offline test. The offline test is triggered,
when the OUTPUT COMPARE block signalizes a mismatch of
combinational logic outputs (M and M**). The test is able to
detect any (modeled) permanent (or a long-duration transient)
fault in M**. The rest of the logic in region A (test controller
CTRL and input processing) is duplicated, thus the error
detection is ensured in the rest of the region A – see Figure 3.

If the offline test discloses a fault in M**, or a malfunction
is detected (duplicated parts outputs are different) in the rest
of the region A, the output of M** is assumed to be invalid and
the output of M as valid. If no malfunction or fault is detected
in region A, the output of M** is marked valid and the output
of M as invalid. Note, that an TED error caused by a fault
located in region C cannot cause an erroneous output if both
region A and region B are fault-free.

To be able to tolerate transient faults, which may also cause
output mismatch, the TED uses the recomputation. A transient
fault will trigger the offline test, but the offline test will be
(with a high probability) not influenced by that fault. The
offline test will always mark M as faulty independently of the
transient fault location (because region A outputs are marked
valid, if no malfunction or fault is detected). Because – in case
of the transient fault – it is not possible to state, which output is
correct, the outputs must be recomputed after the offline test
is performed. Unfortunately, it is not possible to distinguish
permanent and transient fault, thus the recomputation must be
performed always.

To reduce the massive delay overhead introduced by
a permanent fault causing the continuous mismatch in M
and M** outputs, the test result memory represented by the
SYSTEM STATE REGISTER is introduced. The SYSTEM
STATE REGISTER holds the results of the last performed
offline test. The content of the register is used for correct output
selection, instead of performing the offline test (which is time
consuming). The offline test is performed only, if the SYSTEM
STATE REGISTER is empty.

Because transient faults may also cause output errors, the
SYSTEM STATE REGISTER must be cleared periodically to
recover from transient faults. The clearing period must be
chosen to reflect the expected transient fault rate (the period
must be much lower).

The arrangement with the SYSTEM STATE REGISTER
ensures, that the performance degradation is bounded by the
SYSTEM STATE REGISTER clear period – this represents
the worst case, as not every input of combinational logic
necessarily reveals the actual permanent fault.

A. Sequential Logic

The TED is a redundant combinational logic structure,
however it can be naturally used as a part of sequential
logic. The usage of the TED is straightforward – the way to
implement sequential logic using the TED is equal to using
any other area-redundancy-based error-masking structure.

The only difference is, that the output of the TED system
may be delayed and thus the register write enable must be
connected to the TED ready signal (TED signalizes the correct
output).

The example of the sequential logic is shown in Figure 4.



OUTPUT
SELECT

OUTPUT
SELECT

OUTPUT
SELECT

R

S

T

Time-Extended
Duplex

R
E
G

R
E
G

R
E
G

Fig. 4. A high-level example of a sequential logic including the TED

B. Comparison with TMR

The TED system is somehow similar to the TMR system
– some of the TMR blocks are equivalent to parts of the
TED system – even the interface is very similar – thus the
TED description provided in this section is partially based on
comparison with the TMR system. The TMR system is shown
in Figure 5.
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Fig. 5. Detailed scheme of the TMR system

The TED is comparable with the TMR in terms of delay
and area only if: 1) the area overhead of the additional logic
in TED is less than the area overhead caused by the third
combinational logic module and 2) the delay introduced by
the offline test is sufficiently small; 3) the offline test has high
fault coverage.

In the following sections, we describe how to implement an
area-efficient and quickly offline-testable combinational logic
block M**, which is the key part of the TED architecture.

The detailed description of the overall TED architecture
including all details is provided later in Section VI.

IV. MONOTONIC COMBINATIONAL LOGIC

In [14], we have shown, that monotonicity is required
for a short-duration offline test, as it ensures, that the fault
symptoms are not flipped (one to zero or zero to one) during
the propagation to the circuit outputs, and thus simplifies the
overall test.

Unfortunately an arbitrary combinational logic
function cannot be implemented by AND/OR gates only,
inverting function must be present. Because inverter
breaks monotonicity, no inverter must be used inside
the combinational logic block. To introduce inversion,
preserve combinational logic monotonicity, and reduce the
area overhead, we investigated several different ways.

A. Fully-Monotonic Design

The simplest solution to transform any logic function to a
monotonic function is to adopt a fully monotonic logic design,
the Dual-rail logic [19], [15]. In dual-rail logic, an inverter is
represented as a wire-swap only and every signal is represented
by a value on the complementary wires. Unfortunately the
area of this approach is approximately double compared to
the original single-rail circuit.

B. Isolated Monotonic Logic Blocks

In our case, we require monotonicity for testing. To reduce
the area (and power), we allow inverters (single-rail to dual-
rail converters) at the physical inputs of the M** module. This
allows to move from the dual-rail design to a structure we call
isolated monotonic combinational logic blocks – see Figure 6.

M**x y

Fig. 6. Isolated monotonic logic block (M**) contains AND/OR gates only.
The arrays of inverters at its inputs/outputs are denoted x and y

In an isolated monotonic logic block, inverters are placed
at the input or output of the monotonic logic block. When
the monotonic logic is a dual-rail circuit, the input inverters
transform the single-rail signals to dual-rail signals without
disrupting the monotonicity of the isolated block – see blocks
x and M** in Figure 6.

For our method, a single-rail output of the module
M** is sufficient, thus only those internal signals should
remain, which are required to compute the single-rail output.
Therefore, we can remove half of the dual-rail circuit outputs
from the dual-rail implementation (only the positive outputs
remain). Circuit parts feeding only the removed outputs
should also be removed – see Figure 8. Then the dual
signals (originating from the dual-rail implementation) serve as
inverters replacements only. The number of outputs in such a
circuit is equal to the number of outputs in the original single-
rail circuit (module denoted M), and the number of the M**

inputs varies between once and twice the number of the M
inputs.
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Fig. 7. Original NAND-based circuit
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Fig. 8. Dual-rail logic circuit derived from the circuit in Figure 7 – every
NAND gate was replaced by an AND and OR gate pair. The crossed-out gates,
inputs, and outputs are removed by the reduction (M**)

After reduction, the resulting circuit in Figure 8 is smaller,
but it still has more gates than the original single-rail one.
The number of outputs is the same, and the number of inputs
is increased – it has 6 primary inputs instead of 4 in the
original single-rail implementation in Figure 7 – both polarities
of inputs 1 and 2 are required to compute outputs.

The reduction presented in [14] results in circuits having
about 60% of the area of the dual-rail circuits on average. The
resulting area for all benchmark circuits was between 50% and
100% of the dual-rail circuit area. The extreme values were
achieved for smaller circuits only. Large circuits (those from
the IWLS 2005 benchmark set [20]) were close to the average.

If inverted outputs are allowed – see the block of output
inverters denoted y in Figure 6 – both polarities can be selected
during reduction. Here, the reduction success depends not
only on the circuit structure, but also on the output polarity
selection.

We developed five simple ways to achieve the highest
reduction. Two simplest approaches take just the set of positive
(as described above) or just the set of negative outputs. Another
three approaches are greedy heuristics. All greedy heuristics
start with the first output pair and continue with the other pairs.
From each pair of the dual-rail circuit outputs, the output with
smaller additional cost is selected (e.g., selecting one polarity
implies adding less gates than selecting the other polarity). The
heuristics differ just in the cost function. The cost functions
are: number of gates, circuit size (gate sizes may be different
– see Section VIII-A), and delay.

We applied all the developed approaches to benchmark
circuits. When the best result for every circuit was selected,
we achieved only 3% improvement on average compared to
the approach taking just the set of positive outputs.

For the set of benchmark circuits, we additionally
compared the heuristics with results of the Monte-Carlo
method taking random output selections. We achieved no
improvement compared to the best result given by one of the
heuristics. Thus it can be concluded, that all of the greedy
heuristics give results close to optimum.

The isolated monotonic logic blocks can also be created
in a different way. It is possible to start from a single-
rail circuit containing inverters and apply transformations

preserving the logic function by moving inverters to circuit
primary inputs/outputs, as shown in Figure 9. If some of the
gate outputs are present in both forms – direct and inverted,
the gate is duplicated – the first duplicate produces only the
direct and the other only the inverted form. This heuristic
produces also an internally monotonic circuit with inverters at
circuit primary inputs/outputs and the number of circuit inputs
is (usually) also greater than in the original single-rail circuit.

We performed a comparison of the heuristic we developed
to perform the described transformations with the heuristics
reducing the dual-rail circuits and no improvement has been
achieved. The heuristic transforming the single-rail circuit
directly gave always worse, or (in the best case) the same
results as the best heuristic used for the dual-rail reduction.

The overall algorithm for constructing the smallest isolated
combinational logic block is thus the following: take the
minimized single-rail circuit (Figure 7) and create its dual-
rail equivalent (Figure 8). Then apply all heuristics proposed
for reduction (Figure 8) and select the best result.

Fig. 9. An example of gate transformations allowing to move inverters to
the circuit primary inputs/outputs

V. PROPOSED OFFLINE-TESTABLE SOLUTION

The monotonicity itself is not enough to ensure, that all
possible fault symptoms (one and zero) will be propagated
up to the circuit primary outputs. It ensures, that these are
without any change, but they may be still masked and thus
not observable.

The short-duration test of M** requires a special gate
design. The gate has to allow propagation of all possible fault
symptoms (one and zero) up to the circuit primary outputs
without any change and with no masking. We propose a novel
reconfigurable gate structure allowing propagation of both fault
symptoms (zero and one), which is similar to the dynamic
domino logic.

The proposed gate can be configured to: 1) propagate fault
symptom one (OR gate); 2) propagate fault symptom zero
(AND gate); 3) set its output to 1 or 0; 4) work as a one-
bit capacitance-based memory. First, we describe the domino
logic in Section V-A, as it is the basis for our design, and then
the transistor-level structure of the gate itself in Section V-B.

A. Domino Logic

Domino logic is a logic from the dynamic logic family [19].
The gates in dynamic logic work in two alternating phases:
precharge and evaluation. In the first phase, the gates are
forced to a defined state (by a dedicated control) and in the
second phase, the gate inputs are evaluated.

Assume that the control signal, called clock, forces the
gate output to 1 during precharge. In the evaluation phase,



the output remains 1 or switches to 0, depending on the input
values, as shown in Figure 10a). This design style significantly
reduces the load at the gate inputs and also the gate size
compared to static CMOS, because the gate inputs drive the
NMOS transistors only.
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Fig. 10. a) dynamic-logic gate and b) dynamic-logic gate with foot

The precharge function can be realized by a single PMOS
transistor only. If it is not guaranteed, that the gate inputs are
always 0 during precharge, it may be necessary to add an
additional NMOS transistor, which is called foot [19] – see
Figure 10b).

The main issue with the domino gates described above is,
that they require monotonically rising inputs during evaluation.
The outputs of gates described above are monotonically falling
(during evaluation) – this implies, that those gates cannot be
simply concatenated to form deeper circuits. This problem can
be solved by inserting a static CMOS inverter at the dynamic
gate output – this design style is called domino logic. Domino
logic gate outputs are monotonically rising during evaluation
[19] – see Figure 11.

NMOS

C

I0

In

...
O

Fig. 11. Domino-logic gate

The disadvantage of the dynamic domino logic is, that it
employs a high fan-out clock signal. This disadvantage is much
lower, than one would expect, because:

• the clock controls only one (a single PMOS for
unfooted) or two (one PMOS and one NMOS for
footed gates) transistors per gate,

• clock-controlled transistors may be relatively small,
because the design tolerates longer rising delays (up
to half of the computational cycle for 50% clock duty
cycle),

thus the load caused by transistor gates is relatively low. The
main issue is, that there is the need for additional (balanced)

metal wires to distribute the clock signal.

The overall advantage of domino logic is the gate size and
speed. The mobility ratio for holes/electrons is 2 – 3. This
causes that PMOS transistors have to be bigger than the NMOS
ones to achieve the same conductivity [19]. When the dynamic
domino AND and OR gates with precharge to zero are used, the
number of PMOS transistors is reduced significantly, compared
to the number of NMOS transistors.

Domino logic thus represents a trade-off by providing
the faster and smaller gates with reduced static power and
increased dynamic power. Additionally, the domino logic was
deeply studied and was also adopted by industry to develop
high-performance chips [19].

B. Proposed Transistor-Level Structure
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Fig. 12. Proposed transistor-level structure

The proposed structure based on domino-logic is shown
in Figure 12 – this structure can realize both logic functions
(AND/OR) depending on the control signals TU , TC and TD.
The proposed structure is still a domino logic gate. The novelty
is in increased controllability of the gate, which is used for
testability – during the test, the other functions of this structure
are used.

As the described structure is domino-logic-like, it operates
in two phases: precharge and evaluation. The operation mode
and the gate function (AND/OR) is set by control signals, as
shown in Tables I and II, where the output value is switched to
0 (↓) during precharge – depending only on the control (clock)
signals. During evaluation, it preserves its value or is switched
to 1 (l) depending on both the gate inputs and control (clock)
signals.

TABLE I. CONTROL SIGNALS FOR AND

step C TU TC TD O
precharge 0 0 0 0 ↓
evaluation 1 0 1 0 l

TABLE II. CONTROL SIGNALS FOR OR

step C TU TC TD O
precharge 0 0 0 0 ↓
evaluation 1 1 0 1 l

The additional clock signals, are used for mode selection,
during the test, and as the foot control. The load at these
additional clock signals is significantly smaller than at the



default domino-logic clock signal, because these signals
control the smaller NMOS transistors only. Additionally, for
AND function, only TC is switched during computation and
TU and TD are permanently closed – the same applies for the
OR gate function.

Other combinations of the control signals are used during
the offline test to set specified signals to a desired value, to
preserve a logic value for a small amount of time between
few clock cycles, or to raise a fault symptom, when a specific
fault is present in the gate. An example of other control signals
combinations is setting all control signals to 1, which causes
that the gate output is switched to 0; when all control signals
are set to 0, then the output is switched to 1. A one bit
capacitance memory is realized by isolating the internal-node
capacitance – TC , TU and TD are set to 1 and C is set to 0.

According to the best of our knowledge, no similar
structure has been proposed before.

VI. TIME-EXTENDED DUPLEX STRUCTURE DETAILS

In this section, we detail the structure described in Section
III by incorporating principles described in Sections IV and
V. We also provide some implementation details and notes
making the design flow clear.

The detailed scheme of the TED is shown in Figure 13.
Please, refer to the higher-level TED scheme in Figure 3 and
the TMR scheme in Figure 5 for comparison.

As the M** module is the isolated monotonic logic block
(see IV-B), the OUTPUT SELECT modules aggregate the
output inverters coming from this block. Compared to the TMR
SELECT (see Figure 5), the OUTPUT SELECT decision is
based on two inputs and (optionally) on the performed offline
test result. This module is optimized for size and delay.

Complementary modules denoted as MODIF A and MODIF
B aggregate input inverters coming from M** module as
described in Section IV-B. These modules serve also as an
offline-test generator. Depending on common control signals,
the output of MODIF A and MODIF B is an all-zero or all-
one vector or a conversion of the single-rail input to dual-rail
output. The internal structure and an example of the MODIF
block is in Figure 14.

Outputs of both modules (MODIF A and MODIF B) are
driven into an array of C-elements. C-elements serve as two-
input comparators. This arrangement allows to detect faults at
the TED inputs and in both combinational circuits. If inputs I
an J differ, only bits, which are the same in both MODIF A
and MODIF B outputs are guaranteed to be propagated thru C-
elements. Different bits propagate depending on the previous
state of affected C-elements. This implies, that C-elements
sometimes mask input errors and sometimes do not mask them.

If the error is not masked by an array of C-elements (and
also by the following combinational logic), the test is triggered
by OUTPUT COMPARE, which signals output mismatch. The
state-holding property of C-elements together with the MODIF
A and MODIF B ability to set their output to all-one or all-
zero vector allows to emulate a two-input multiplexer in just
two steps (Figure 15), and thus the difference of inputs may
be detected during the offline test. Additionally, C-elements
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Fig. 14. The MODIF block is composed of pairs of multiplexers (a) with semi-
dual outputs. Any but one of both multiplexers can be removed depending on
the combinational circuit structure. An example of a complete MODIF block
for the circuit in Figure 8 is in subfigure (b)

allow to perform a concurrent test of MODIF A and MODIF
B.
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Fig. 15. C-element input to output switching behavior is given by the C-
element state-holding property: the value Cn+1 is propagated to C-element
output in two steps – by setting the second input to 0 and subsequently to 1
– independently of the previous output state value (Cn)

The test controller is designed as a self-checking duplex
circuit. It is composed of two identical and independent
Moore-type controllers (CTRL A and CTRL B) and an array
of C-elements. The C-elements serve also as two-input
comparators. If both inputs of C-elements match, the output
changes to the input value, otherwise the original output value
is conserved [15]. The C-elements outputs are used to control
the test and these are also driven back to each controller to
compare with the controller’s output. An error is thus detected
at least by one of the controllers.

Alternatively, the C-elements may be skipped and the
self-checking controller may be designed as a master-slave,
where one of the controllers produces the true control signals
and the second just checks their correctness. Although this
approach will reduce the area overhead, the arrangement
with C-elements allows – in case of malfunction of one of
controllers – to inhibit any transition on control signals: if the
correctly working controller performs no output transitions, the
C-elements outputs are stable.
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The OUTPUT COMPARE module (a XOR tree) signals
the output mismatch as a single-bit information to the test
controllers. The size and delay of this part are influenced
significantly by the number of combinational logic outputs.

The OUTPUT POLARITY module checks the offline test
responses and the information about detected faults is stored
into the SYSTEM STATE REGISTER.

VII. PROPOSED OFFLINE TEST

The offline test of M** is composed of several sub-tests.
Each sub-test is designed to cover a set of faults in M**

(Sections VII-B and VII-C) or errors at the outputs of other
modules (Section VII-A).

A. M** Inputs Test

At the beginning of the test, the inputs sub-test is
performed. MODIF B is used to propagate the output of
MODIF A thru the C-elements. This is performed in two steps:
the output of MODIF B is set to all-one – this propagates all
ones from the MODIF A output to the C-elements output. Then
the output of MODIF B is set to all-zero – this propagates
zeroes from the MODIF A output to the C-elements output.
After that, the output of M** is computed by using the MODIF
A output only. The output is then compared with the M output.

The same steps are then repeated for the MODIF B output
and the result is also compared with the output of M. If one
of the two M** outputs matches the M output and the other
does not match, erroneous MODIF has been detected. If no
output matches with the M output, the test continues to the
next sub-test.

B. M** Test

The main part of the test is a short-duration test of the
module M**. The following sub-tests are performed level by

level – the control signals of gates with the same gate level
are joined to form a single control signal, driven by the test
control logic. The gate level is defined as the maximal path
length (number of gates) from the circuit primary inputs. The
circuit depth is the maximum of the gate levels. The primary
inputs are at level 0.

The term primary input is used in all sub-tests and refers to
physical, not the logical circuit inputs. In the reduced dual-rail
logic (Section IV), one circuit input is represented by one or
two signals (primary inputs).

The test of M** is inspired by ideas described in Section I
– the circuit is periodically flooded by a single value (1 and
0 alternate), and the flood propagation can be disrupted by
faults. As this happens level-by-level, a fault in a lower level
will cause the same fault symptom at higher levels. During
the test, the control signals are used to excite and propagate
the fault symptoms. This is the core idea of the short-duration
test.

For example, if the gate preset to 0 is performed, then a
stuck-open in an NMOS transistor of a gate at the first level
will inhibit transition to 1, and thus cause that a zero value
will occur at an input of a gate (configured as AND) at level
two. This value – the fault symptom – is propagated up to the
circuit outputs.

The proposed short-duration test of M** itself is divided
into 3 sub-tests. Every sub-test is described in a dedicated
table (Tables III, IV and V) as the sequence of iterations over
the circuit levels. For every step of each sub-test, the values of
control signals C, TU , TC and TD are defined for each circuit
level. The value of the gate output (signal O) is defined in the
last column – arrows are used for transitions caused by the
control signal setting (0 → 1 or 1 → 0) in case of fault-free
behavior.

The sub-test 1 (Table III) and the sub-test 3 (Table V)
were designed to detect stuck-open faults and the sub-test 2



TABLE III. THE TEST SEQUENCE OF THE sub-test 1

step C TU TC TD O
1 set circuit primary inputs to 0
2 start in level i = 1
3 in all levels:

0 0 0 0 ↓
4 in level i: 0

1 1 1 1 ↑
5 in level i: 1

1 0 0 0 1
6 in levels other than i: 0

1 0 1 0 0
7 set circuit primary inputs to 1 ↑
8 Check if the circuit output is all-one 1
9 if (++i ≤ depth) then goto 3 1

TABLE IV. THE TEST SEQUENCE OF THE sub-test 2

step C TU TC TD O
1 set circuit primary inputs to 0
2 1 1 1 1 ↑
3 0 0 0 0 ↓
4 start in level i = 1
5 in all levels: 0

1 0 0 0 0
6 in level i: 0

1 0 1 1 0
7 in level i: 0

1 1 1 0 0
8 in level i: 0

1 1 0 1 0
9 if (++i ≤ depth) then goto 5 0

10 Check if the circuit output is all-zero 0

TABLE V. THE TEST SEQUENCE OF THE sub-test 3

step C TU TC TD O
1 0 0 0 0 ↓
2 set circuit primary inputs to 1 0
3 1 0 0 0 0
4 start in level i = 1
5 in level i: 0

1 0 1 0 ↑
6 in level i: 1

1 0 0 0 1
7 if (++i ≤ depth) then goto 5 1
8 Check if the circuit output is all-one 1

(Table IV) to detect stuck-on faults. Additionally, the tests are
able to detect some faults of the other type as a side-effect.
Stuck-opens are generally relatively simple to detect because
the gate is unable to change the output (the gate output retains
its previous value). Every sub-test contains a cycle with the
number of iterations equal to the circuit depth. A detailed
example of sub-test 1 for a fault-free circuit is in Figure 16
and for a faulty circuit in Figure 17.

Table VI shows, which sub-test detects a stuck-open/stuck-
on fault for a given transistor (see transistor labels in Figure
12).

TABLE VI. SUB-TESTS COVERING THE FAULTS

tests covering faults
transistor stuck-on

(short)
stuck-open

a 3 2
b 2* 1, 3
c 2 3
d 2 1
e 1*, 3* 2
f 2 1, 3
g 2 1
h 2 3

In sub-test 1, the output is checked in every iteration
because the precharge function of gates in the targeted level
is tested – the level-by-level fault-symptom propagation is not
possible. In this case, the function of gates in the targeted level
is checked and the other gates are configured to propagate fault
symptoms up to the circuit outputs.

In other tests, the output is tested only once at the end of
each sub-test. The tests principle is that the value at the faulty
gate output is flipped even if it should stay constant during
the test. The value flip in the lower level causes that a pull-
down path in the following level becomes conductive even if
it should be closed (for sub-test 2) or vice-versa (for sub-test
3). In this way, a possible fault syndrome is propagated up to
the primary outputs.
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C. Uncovered Stuck-On Faults

Several tests in Table VI are marked by an asterisk. The
stuck-on faults at transistors ‘b’ and ‘e’ need not be necessarily
detected by the presented sub-tests. The detectability of these
faults depends on the fault nature. From the functional point
of view, a fault causing an error at the gate output should be
detectable by the presented tests. But in reality, it can behave
as a transient fault if a short in the transistor causes, that the
output voltage is close to the next gate input threshold. Such
a fault can cause errors on a random basis and may or may
not be detected.

This can be solved by applying fault-current measurement.
The fault-current is normally measured externally [16], [19],
but in the past years, much work has been done also in the
Built-In Current Sensors (BICS) area, starting from [21] in
1996, where the first BICS for deep sub-micron technologies
has been presented. Recently, BICSs were proposed also for
transient faults detection [22].

One BICS is able to monitor only a limited number
of power rails due to a limited resolution and current load
capacity. This implies using more parallel BICSs for the whole
circuit [21]. We propose to use BICSs just for fault detection at
the output inverting stage of the proposed gate. Just one power
rail has to be measured using BICS. Based on the previous
sentences, this reduces the area overhead caused by using
parallel BICSs. Additionally, the increased controllability of
the circuit allows performing the required test by applying two
test-vectors only – one vector to force the value 1 at the output
of all gates and the second for the value 0. The mentioned
stuck-on faults are detectable using BICS at the end of sub-
test 2 and sub-test 3, therefore, no additional test cycles are
required (although BICS tends to be slow and thus increase
the test time).

As the used fault model does not fully reflect the bridging
faults, it is advantageous to use BICS not only for uncovered
stuck-on faults, but also for the online detection of bridging
faults located at the gate outputs.

D. The Overall Test

The overall offline test is composed by concatenating all
the sub-tests. Sub-tests 1 – 3 form the short-duration offline
test of M**. If these tests are interleaved by fault-current
measurement, as described above, they form the complete
short-duration offline test. The offline test used in TED
includes also the functional M** inputs test.

The offline test length is variable. If an erroneous input is
identified during the inputs sub-test, the test is terminated, with
indication of a fault presence. If not, the test continues with
the next three sub-tests. If no fault is detected during sub-tests
1 – 3, the output of module M is marked as faulty.

The total test length is given by the following equations:

ttot = tinput + t1 + t2 + t3 [+ 2 · tBICS ] (1)

assuming that d is the circuit depth and te is the upper
estimation of the time required for signals setting during the
sub-tests, we can substitute:

ttot ≤ 2·te +(d·te)+(te+d·te)+(te+d·te) [+ 2·tBICS ] (2)

ttot ≤ (3d+ 4) · te [+ 2 · tBICS ] (3)

This implies that the resultant test length depends on gate
sizes and the circuit depth only.

The parameter d depends on the circuit structure. In real
circuits, d is often smaller than 10. In general, te is the time
of few computational cycles only (clock cycles for clocked
circuits). Thus, the total test length remains in orders of tens
of computational cycles only.

VIII. EXPERIMENTAL EVALUATION

In this section, we provide a comparison of the proposed
solution with the standard static and dynamic domino logic
implementations based on standard benchmark sets.

In section VIII-B, we provide a comparison of the proposed
combinational-logic style (used to implement M**) with the
static NAND-based and dynamic domino logic styles (used to
implement M).

The complete comparison of the TED (Figure 13) and the
TMR (Figure 5) systems is provided in Section VIII-C.

The comparison is based on a simplified and technology-
independent, but accurate gate model described in Section
VIII-A.

A. Used Gate Model

To compare properties of circuits designed by using the
proposed gate structure with static CMOS NAND gates and
with standard dynamic domino logic, we use a transistor-level
model. Our model considers just the transistor channel width
and length. For comparison, static CMOS NAND has been
chosen because of its area-efficiency and domino logic gates
because of delay equivalence to the proposed gate structure
[19].

We consider that the conductivity of an NMOS transistor
is 2.5-times higher than the conductivity of a PMOS transistor.
The same assumption as for the conductivities is made
for the transistor gate capacitances. Thus, the load caused
by the PMOS transistor of the same conductivity is 2.5-
times higher than that of the NMOS one. This allows to
approximate the load at the output of each gate and thus
the technology-independent estimation of delay and dynamic
power consumption is possible. More detailed and precise
description of gate delay/size models can be found in literature
under the term of logical effort [19].

Based on the transistor-level properties, the simplified
model for every logic gate is created. The gate model has
the following parameters: size; precharge delay expressing
the time required to charge internal gate capacitance during
precharge; internal delay expressing the time required to
charge internal gate capacitance during evaluation; input
capacitance expressing the capacitance at the gate input;
output current expressing the minimal current delivered by the
gate output.



If the delay of the NAND gate is to be minimized, its size
must be increased, but this affects the input capacitance of the
gate inputs and thus increases the gate input load. It may imply
that subsequent gates should be resized as well.

For the proposed (and also a standard domino) gate, the
inverter at the output partially shadows the outputs from the
inputs – the output current is affected by the size of the
transistor ‘b’ (Figure VI). If the transistor size is doubled, the
output load charging is two times faster. Naturally, doubling
the size of ‘b’ will increase the internal gate delay but the
input capacitance is not affected.

As described in Section V-B, the proposed AND and OR
gate structures are equivalent in general. The only difference is
in internal delay during the evaluation caused by the different
number of transistors in series (2 for OR and 3 for AND),
which is the same as for equivalent standard domino gates.

For gates with high fan-out, the modeled delay may be
too pessimistic with our model. Thus, for circuits with similar
structure, we compare delay. For circuits with dissimilar
structures, we compare circuit depth.

TABLE VII. GATE PROPERTIES

gate input
capacitance

output
current

precharge
delay

internal
delay

area

NANDstatic 4.5 1 - - 9
inverterstatic 3.5 1 - - 3.5
ANDdomino 1.0 0.4 5.0 6.0 6.0
ORdomino 1.0 0.4 5.0 4.0 6.0
ANDproposed 1.0 0.4 5.0 6.0 8.0
ORproposed 1.0 0.4 5.0 4.0 8.0

For static NAND we have chosen a symmetric conductivity,
which is usual [19]. For dynamic gates we have chosen the
smallest possible sizes because they are faster compared to
static NAND gates. For all model parameters of used gates,
see Table VII.

The advantage of dynamic logic is obvious. Consider two
functionally equivalent circuits: one composed of static NAND
gates and the second of the proposed domino gates. If there
is a gate with fan-out f in the NAND-based circuit, the load of
the gate output is:

l = f · 4.5 (4)

The output load of the proposed (or the standard domino) gate
with an equivalent fan-out is:

l = f · 1 (5)

B. Combinational Parts Comparison

A comparison of the proposed M** with static NAND-based
M and dynamic domino logic-based M is provided.

We synthesized 240 circuits from the following
benchmarks: LGSynth’91 [23], LGSynth’93 [24], ISCAS’85
[25], ISCAS’89 [26], IWLS 2005 [20] and QUIP 2005 [27]
and EPFL 2016 [28].

The flow was as follows: the benchmark circuits were pre-
processed by the ABC [29] tool. At first, combinational parts
were extracted by the command comb and the following script
was applied:

st; dch; map; mfs; b

This script was iterated 20-times. The library of standard two-
input gates was used by the map command. The result of
the preprocessing was an optimized combinational part of the
benchmark circuit in an AIG (And-Inverter Graph) format. The
AIG was then used to construct the reduced dual-rail circuits as
described in Section V-B. Circuit characteristics were extracted
using the gate model from Section VIII-A.

The quantitative results of the comparison based on all
circuits from the set are shown in Table VIII. Mstat represents
the static CMOS NAND implementation and Mdomino the
dynamic domino logic implementation of M. M** represents
the proposed implementation. Table VIII shows size and delay
comparison of the proposed (M**) and the standard (M) module
implementations – if the number in Table VIII is less than
100%, the proposed implementation (M**) is better than the
standard implementation (M).

TABLE VIII. M** AND M COMPARISON

min max median avg
area: M**/Mstat 52% 147% 84% 88%
delay: M**/Mstat 38% 266% 92% 94%
area: M**/Mdomino 133% 133% 133% 133%
delay: M**/Mdomino 100% 100% 100% 100%

On average, the proposed structure is better than the static
implementation of M in both area and delay (M** compared to
Mstat) and it has equivalent delay and 133% of the standard
domino logic implementation area (M** compared to Mdomino)
– for additional 33% of area, the proposed solution offers 100%
fault coverage with respect to the selected fault model.

C. Time-Extended Duplex and TMR System Comparison

The comparison of combinational logic provides just partial
information about the proposed method usability. Thus, a
comparison of the complete TED structure (Figure 13) and
the dynamic domino logic-based TMR system (Figure 5) is
provided. TED is based on the domino logic variant (M**),
and it is better than the static CMOS in both area and delay
at the same time, thus comparison with domino logic-based
TMR system only makes sense.

The area of TMR SELECT (see Figure 5) is proportional
to the number of TMR system outputs. If the number of inputs
and outputs of the combinational part is bigger than 50, then
the area of additional TED logic is proportional to the number
of inputs/outputs (the synthesis results show, that the constant
part of the additional logic is bigger than the variable part
for circuits with less than 50 inputs and outputs). From the
empirical observations of relations between sizes of modules
in the TED and TMR systems, we deduced the following
expressions (|A| represents the area of A):

if (#inputs ≈ #outputs) and (#outputs > 50) :

18 · |TMR SELECT| < |M| (6)

For a circuit where the expression (6) holds, TED is
(likely) better than the TMR system from the area perspective
(additional logic in TED occupies smaller area than it was
obtained by using a duplex instead of a triplex structure).
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The heuristic based on the expression (6) has been verified
by using 67 circuits selected from the original benchmark
set. These circuits were selected to satisfy the expression
(6) conditions. Additionally, only circuits with at least 3k
of gates were selected and the number of circuit inputs and
outputs was limited to 15k for the selected circuits. Note that
combinational parts were extracted from sequential benchmark
circuits, therefore such large numbers of inputs and outputs
may appear for larger circuits.

The solid line in Figure 18 symbolizes the border, where
the TED system is better than the TMR system from the area
point of view. Under this “success line”, there are 28 out of
the 67 circuits. The dashed line is the border from where the
expression (6) has predicted, that the TED will be area-efficient
compared to the TMR system.

Under the dashed line, there are 14 out of the 67 circuits
– these are circuits with at least 11% improvement. Thus,
according to the experimental evaluation, the heuristic based
on the expression (6) is pessimistic. Because the TED brings
additional delay, the dashed line symbolizes the border from
where the TED is better than TMR (for most of the circuits),
if the area and delay are equally important. Detailed data for
some circuits from Figure 18 are in Table IX.

IX. DISCUSSION

In the TED system, there is a number of additional modules
compared to the TMR system. TED is smaller compared to
the TMR system when the area saved in combinational logic
is bigger than the area occupied by the additional modules
in the TED system. The size of additional modules is almost
constant (CTRL A and CTRL B) or depends on the number
of combinational logic inputs and outputs (other modules).

The delay of the TED system is bigger than the delay of
TMR system. The additional depth introduced by MODIF and
the array of C-elements is 4. However, the most critical module
from the delay point of view is the OUTPUT COMPARE block.
The delay/depth (and area) of OUTPUT COMPARE grows
linearly with the number of combinational circuit outputs.

The impact of additional delay may be reduced by using
the pipeline and speculative execution techniques. Speculative

execution is often used with branch prediction to speed-
up modern processors [30]. In the TED system context the
speculation means, that the execution continues, although the
correctness of the result is not known yet. As the additional
delay in the TED system is smaller than half of the total delay
of the TED system (for the proper set of circuits), the duration
of such speculation is one cycle only. Thus, only one pipeline
stage rollback must be performed if a fault is detected.

The proposed method is thus suitable (compared to the
TMR system) for circuits having relatively large combinational
parts with a relatively small number of outputs (or in pipelined
systems).

X. CONCLUSIONS

A new method for a design of error-mitigating circuits was
presented and a comprehensive description of the overall error-
masking architecture was provided. Our method combines
time and area redundancy in an efficient way. It employs
a novel gate structure and a short-duration offline test to
reduce the area, while the time penalty remains reasonable.
We developed an efficient algorithm to create the isolated
monotonic combinational logic blocks.

The error-mitigating ability of the proposed Time-Extended
Duplex is very close to TMR, thus a comparison of TMR and
TED was presented.

In the experimental part, we identified a class of circuits,
where our approach is advantageous from the area point of
view. According to the expression (6), the method is beneficial
for relatively large combinational circuits.

As a significant portion of the additional delay in the TED
system is proportional to the number of circuit outputs, TED
is efficient for circuits with a small number of outputs only.
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TABLE IX. THE COMPARISON OF THE TED AND TMR SYSTEMS FOR A SOME OF THE SELECTED CIRCUITS

Circuit name # inputs # outputs M** area M area TMR area TED area r [%]

ac97 ctrl part0 [20] 2167 2115 84 k 63 k 344 k 524 k 165,49%
ethernet part0 [20] 10522 10400 359 k 269 k 1565 k 2405 k 164,80%
pci bridge32 [20] 3376 3171 157 k 118 k 597 k 855 k 154,86%
oc cfft 1024x12 part0 [27] 419 416 33 k 25 k 105 k 146 k 147,76%
bigkey [23] 452 229 37 k 28 k 100 k 126 k 135,55%
spi [20] 240 237 33 k 25 k 91 k 110 k 126,38%
des [23] 256 245 40 k 30 k 108 k 124 k 120,33%
bar [28] 135 128 24 k 18 k 62 k 72 k 120,33%
oc aes core inv [27] 1056 667 113 k 85 k 331 k 364 k 116,65%
oc aes core [27] 659 529 99 k 74 k 271 k 286 k 110,64%
tv80 [20] 367 353 78 k 59 k 201 k 212 k 109,49%
des area [20] 367 192 62 k 47 k 154 k 160 k 108,55%
des perf part0 [20] 5643 1572 961 k 721 k 2569 k 2422 k 98,79%
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