SIMPLE, SCALABLE ADAPTATION FOR NEURAL MACHINE TRANSLATION

Ankur Bapna, Naveen Arivazhagan, Orhan Firat
OUTLINE

NMT BASICS

DOMAIN SPECIFIC ADAPTERS

MASSIVELY MULTILINGUAL MACHINE TRANSLATION
NMT BASICS
NEURAL MACHINE TRANSLATION

Jsem student \rightarrow SEQUENCE TO SEQUENCE MODEL \rightarrow I am a student

Jsem student \rightarrow ENCODER \rightarrow DECODER \rightarrow I am a student
ATTENTION AND TRANSFORMERS

Attention computation

Multiplying 'value'

Attention weights for 'This'

Key
Value
Query

This
This
This
This
is
is
attention
attention
Translation
cat cat cat cat cat cat

Reference
the cat is on the mat

Unigram precision = 1
Bigram precision = 0
STATE OF THE ART

Dominant approach
Fine-tuning a base model for a specific language pair or a domain

Problems
• Expensive
• Low resource language performance
• Not universal

References
- Effective Approaches to Attention-based Neural Machine Translation -- Luong and Manning, 2015
- Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation -- Wu et al., 2016
- Rapid Adaptation of Neural Machine Translation to New Languages -- Neubig and Hu, 2018
- Learning Hidden Unit Contribution for Adapting Neural Machine Translation Models -- David Vilar, 2018
DOMAIN SPECIFIC ADAPTERS
APPROACH

1. Take a standard trained NMT model
2. Freeze all parameters
3. Add a light-weight adapter layer for each task
4. Fine-tune each adapter for its task
MODEL ARCHITECTURE

Encoder
- Feed forward
- Self attention

Decoder
- Feed forward
- Cross attention
- Self attention

I am a student

Jsem student

Up projection
- RELU
- Down projection
- Layer norm
DATASETS

- **Workshop on Statistical Machine Translation ‘14 (WMT)**
 - Source training dataset
 - 36M pairs

- **The International Conference on Spoken Language Translation ‘15 (IWSLT)**
 - Adapter training dataset
 - 247k pairs

- **JRC Acquis**
 - Validation and test dataset
 - 11k pairs
PERFORMANCE

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Base</th>
<th>Fine-Tune</th>
<th>LHUC</th>
<th>Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMT '14</td>
<td>42.80</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IWSLT '15</td>
<td>41.33</td>
<td>44.59</td>
<td>43.33</td>
<td>44.63</td>
</tr>
<tr>
<td>JRC</td>
<td>54.60</td>
<td>64.13</td>
<td>57.10</td>
<td>63.48</td>
</tr>
</tbody>
</table>

Results are BLEU score multiplied by 100
MASSIVELY MULTILINGUAL MACHINE TRANSLATION
APPROACH

- Global training
 - Fully shared model transfer to low resource languages
- Refinement
 - Fine-tuning adapters for high resource languages
METHODOLOGY

- Single Transformer Big
- 102 to and from English
- Same hyper-parameters as bilingual
- Fine-tune for each pair
From left to right, languages are arranged in decreasing order of available training data.
Any-to-English Translation performance for multilingual models with adapters

From left to right, languages are arranged in decreasing order of available training data.

BLEU score increase

From left to right: Bilingual Baselines, Multilingual, Adapters, Adapters-Large.
CONCLUSION

Proposed light-weight adapters

Evaluated on domain adaptation and MMMT

Achieved similar or better scores in low resource language translation
THANK YOU FOR YOUR ATTENTION